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INTRODUCTION

The use of artificial intelligence methods finds 
practical application in many different scientific 
and industrial fields such as electrical engineering 
[1], mechanical engineering [2,3], materials engi-
neering [4], environmental engineering [5], and 
many more. Artificial intelligence methods, and 
machine learning in particular, are also indicated 
as an important element of the popular Industry 
4.0 concept [6]. A key issue within the Industry 
4.0 concept is collection and processing of the 
data, e.g. through the use of Internet of Things 
technology [7]. The data can then be used to build 
machine learning models. Some examples of the 
most popular models are: shallow neural networks, 
deep neural networks (DNN), decision trees, 
random forests, and Support Vector Machines. 

The mentioned models can be used for re-
gression, classification and clustering. A very 
common phenomenon associated with the prac-
tical application of machine learning models is 
working with an unbalanced dataset. This is most 
often the case when the task of the model is clas-
sification, i.e. identifying standard cases from un-
usual ones, e.g. manufacturing defect detection, 
fraud detection, medical diagnosis. These cases 
are called classes. Thus, in the case of an unbal-
anced dataset, there will be a majority class and 
one or more minority classes. In order to perform 
the entire model building process correctly, data 
balancing must be applied. There are two main 
data balancing techniques, i.e. undersampling and 
oversampling [8,9]. Undersampling, also called 
downsampling, involves removing samples 
from majority class. The most undersampling 
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methods are based on the k-nearest neighbours 
algorithm. In contrast, oversampling, another 
name is upsampling, involves adding samples to 
a minority class. Popular upsampling techniques 
include Adaptive Synthetic Sampling Approach 
(ADASYN) [10], Random Oversampling Exam-
ples (ROSE) [11], Synthetic Minority Oversam-
pling Technique (SMOTE) [12].

The problem with insufficient data is not lim-
ited to the case of numerical data only, but also ex-
tends to images. There are many papers describ-
ing the use of image analysis in defectoscopy. In 
many works deep neural networks are used to de-
tect production defects in castings. Most of them 
are based on image analysis. The source images 
can be X-rays [13,14], light microscope [15] but 
also metallographic images taken with a scanning 
electron microscope [16]. A number of data aug-
mentation techniques are used to solve the prob-
lem of unbalanced datasets, e.g. geometric trans-
formation, histogram equalization, generation of 
synthetic defects to images [17]. Defect detection 
methods based on computer vision show high ef-
ficiency, but require the preparation of an addi-
tional measuring workstation and time to perform 
accurate, often multiple, measurements.

The aim of this paper is to build a deep neural 
network to detect a casting defect associated with 
a leakages. The main novelty of our research is a 
completely different methodology for building a 
machine learning model. The dominant approach 
in the literature is to detect a defect from an im-
age. Unlike this approach we have proposed a 
method that uses numerical data from the produc-
tion process to evaluate the casting. As a result, 

once the casting has been produced, no additional 
operations, such as X-ray images acquisition, are 
required. Another novelty is the use of the model 
interpretation method to identify a potential cause 
or set of causes of the defect. To our knowledge, 
no study to date has utilised the Shapley values to 
analyse the cause of a casting leak.

MATERIALS AND METHODS

Casting process parameters

The data came from production plant located 
in Poland. Due to production plant’s know-how 
protection policy, we are not allowed to reveal 
its full name. The production process of car en-
gine heads is well measured by a traceability sys-
tem. The collected data has both qualitative and 
quantitative character. Among qualitative data, 
one can find information such as casting machine 
number, mould number or operator id. However, 
from the point of view of defect detection, quan-
titative data was more useful. In the feature selec-
tion process, we selected 31 features or, in other 
words, predictors that we would include in the 
model. We do not describe the feature selection 
process in the article for the reason that it was 
mainly based on an expert analysis performed 
by a technologist. The selected data can be di-
vided into four groups. These were data related 
to the mould, mould cooling system, material 
and cycle time. A block diagram of the model is 
shown in Figure 1. A more detailed description is 
shown in the following list, unfortunately, due to 

Fig. 1. Block diagram of the analysed DNN model
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know-how protection policy, we cannot provide 
more detailed technological information:
 • mould:

− nine measuring points of mould tempera-
ture, the data reading occurred twice, once 
at the start and once at the end of the casting 
process;

 • mould cooling system:
− five measuring points of cooling water flow;
− one measuring point of cooling water 

temperature;
 • material:

− two measuring points of aluminum temper-
ature, the data reading occurred twice, once 
at the start and once at the end of the casting 
process;

 • cycle time:
− one measuring of production global cycle 

time;
− two measuring of production selected op-

erations cycle time;

At this stage of the research, we focused on 
detecting only one casting defect, i.e. leakage. 
Thus, this is an example of binary classification 
with specific two classes ‘ok’ (normal casting) 
and ‘leakage’ (defective casting). The dataset in-
cluded 38 491 observations and was unbalanced. 
There were 1 529 cases describing the occurrence 
of leakage, which is less than 4%.

Modelling procedure

Data preprocessing consisted of several steps, 
the order of which is important. The first step was 
to divide the data into a learning and testing data-
set. From the entire dataset, we randomly selected 
2/3 of the observations as the teaching set (25 660 
cases), while the remaining 1/3 of the data formed 
the testing set (12 831 cases). In order to main-
tain the proportion of classes in both datasets, we 
used stratified random selection. As a result, the 

learning dataset included 1 016 and the testing 
dataset included 513 cases of the leakage class, 
which represented 4% of both dataset.

Several predictors were characterized by 
some asymmetry. In some cases, bimodality and 
concentration in a narrow range of values were 
also noticeable. For this reason, we applied the 
Yeo-Johnson transformation [18]. The next step 
was to standardize the data in both datasets. 

Due to unbalanced data, the models could be 
characterized by a burden of high efficiency in 
predicting the class of regular castings and low 
efficiency in detecting casting defects. Therefore, 
in order to remove the imbalance, the SMOTE 
method was used. This method consists of 
upsampling performed by simulating data cre-
ated as linear combinations of existing observa-
tions. Then the newly formed observations have 
a similar multivariate distribution to that of the 
original data. It is important that upsampling is 
applied after splitting the learning and testing 
datasets. Otherwise, so-called data leakage could 
occur. In that case, a certain amount of informa-
tion about how new observations were generated 
would be transferred to the testing dataset by the 
random division. This could artificially improve 
the quality of the classification. Similarly, data 
standardisation should also be carried out after 
splitting into a learning and testing dataset, but 
before balancing the learning dataset [19]. As 
a result of balancing, the learning dataset has 
grown to 49 288 observations. Details of the size 
of each dataset are shown in Table 1.

The deep neural network model was pre-
pared in the Keras framework [20] implemented 
in the RStudio environment [21]. The procedure 
for finding the optimal model was to gradually 
expand the network structure. We started with 
a network with one hidden layer with different 
combinations of the number of neurons. In sub-
sequent trials, we increased the number of layers 
and again tested different combinations of the 

Table 1. The size of learning and testing dataset

Specification Original dataset
Learning dataset

Testing dataset
before SMOTE after SMOTE

Class ‘ok’
number of observations
(dataset percentage)

36 962
(96%)

24 644
(96%)

24 644
(50%)

12 318
(96%)

Class ‘leakage’
number of observations
(dataset percentage)

1 529
(4%)

1 016
(4%)

24 644
(50%)

513
(4%)

Total number of observations 38 491 25 660 49 288 12 831
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number of neurons. We considered three types 
of hidden layers: dense, dropout and regulariza-
tion layers. Without using the last two layers, the 
model always came out overfitted. The dropout 
layer removes a certain proportion of neurons (in 
our case it was up to 50%). The regularization 
layer can use the L1 and L2 norm. Using the L2 
norm reduces the values of the model weights, 
while the L1 norm removes less important neu-
rons. The activation function for each layer 
was ReLU. The exception was the last layer for 
which we adopted a sigmoidal activation func-
tion. The reason for this was that we wanted to 
achieve a casting defect probability in the output 
of the network.

Classification performance and 
model interpretability

We assessed the quality of the model using 
the Receiver Operating Characteristic (ROC 
curve) [22]. The ROC shows the relationship be-
tween true positive rate (TPR) and false positive 
rate (FPR) at all levels of threshold. The values of 
TPR and FPR vary from 0 to 1. As the ROC curve 
is closer to the point (TPR = 1, FPR = 0), the bet-
ter is the classifier. The TPR and FPR rates can be 
calculated as:

 
𝑇𝑇𝑇𝑇𝑇𝑇 =

𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹

 

 
𝐹𝐹𝐹𝐹𝐹𝐹 =

𝐹𝐹𝐹𝐹
𝐹𝐹𝐹𝐹 + 𝑇𝑇𝑇𝑇

 

where: TP – true positive, denotes the number of 
observations for which the model classi-
fied the casting as faulty when the casting 
was actually faulty (these are the cases we 
expect to see most),

 TN – true negative, denotes the number of 
observations for which the model classi-
fied the casting as correct when the cast-
ing was actually correct,

 FP – false positive, denotes the number of 
observations for which the model classi-
fied the casting as faulty when the casting 
was actually correct,

 FN – false negative, denotes the num-
ber of observations for which the model 
classified the casting as correct while the 
casting was actually faulty (these are the 
cases we expect to have the fewest).

The threshold level determines at what value 
of the leak probability (model output signal) the 

casting will be considered as a leak. The default 
value for the threshold level is 0.5, but this can 
be adjusted during model calibration processes. 
Whether we care more about detecting leaks or 
detecting correct castings, the threshold will vary. 
The model output signal is the probability of 
leakage. If that probability exceeds the threshold 
then we assigned such an observation as a class 
‘leakage’ otherwise as a class ‘ok’. In our case, 
the threshold level was selected on the basis of a 
distance criterion, i.e. we chose the point on the 
ROC which was closest to the point (1, 0). This 
threshold level was a trade-off between maximiz-
ing TPR and minimizing FPR. The distance crite-
rion [23] can be calculated as
 𝑑𝑑 = (1 − 𝑇𝑇𝑇𝑇𝑇𝑇)! + 𝐹𝐹𝑇𝑇𝑇𝑇! 

After determining a specific threshold on the 
ROC curve, we calculated the accuracy (ACC). 
The ACC value varies from 0 to 1. This index is a 
very common measure of the quality of a classi-
fier; however, it can easily take on high values in 
the case of an unbalanced dataset. The ACC can 
be calculated as

 
𝐴𝐴𝐴𝐴𝐴𝐴 =

𝑇𝑇𝑇𝑇 + 𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇 + 𝑇𝑇𝑇𝑇 + 𝑇𝑇𝑇𝑇 + 𝐹𝐹𝑇𝑇

 

The last index of classifier performance we 
used was the Area Under ROC Curve (AUC). 
This index, unlike ACC, does not depend on the 
threshold level and evaluates the model in a more 
general way. It can also be used in the case of an 
unbalanced dataset.

We performed the model interpretability using 
Shap analysis. The method allowed to perform a 
local analysis (so-called instance level) for sin-
gle observations as well as a global analysis (so-
called dataset level) by averaging Shapley values 
over all observations [24]. The formal definition 
of Shapley value describes it as the contribution 
𝜙𝜙!  of the j-th feature to the prediction of the value 
𝑓𝑓"(𝑥𝑥)  according to the following formula

 
𝜑𝜑(𝑥𝑥, 𝑗𝑗) =

1
𝑝𝑝!
+Δ!|#(%,!)(𝑥𝑥)
%

 

where: Δ!|#(𝑥𝑥) = 𝐸𝐸$'𝑓𝑓(𝑋𝑋)*𝑋𝑋!! = 𝑥𝑥!! , … , 𝑋𝑋!" = 𝑥𝑥!" , 𝑋𝑋! = 𝑥𝑥!- − 𝐸𝐸$'𝑓𝑓(𝑋𝑋)*𝑋𝑋!! = 𝑥𝑥!! , … , 𝑋𝑋!" = 𝑥𝑥!"- 
Δ!|#(𝑥𝑥) = 𝐸𝐸$'𝑓𝑓(𝑋𝑋)*𝑋𝑋!! = 𝑥𝑥!! , … , 𝑋𝑋!" = 𝑥𝑥!" , 𝑋𝑋! = 𝑥𝑥!- − 𝐸𝐸$'𝑓𝑓(𝑋𝑋)*𝑋𝑋!! = 𝑥𝑥!! , … , 𝑋𝑋!" = 𝑥𝑥!"- 

Δ!|#(𝑥𝑥) = 𝐸𝐸$'𝑓𝑓(𝑋𝑋)*𝑋𝑋!! = 𝑥𝑥!! , … , 𝑋𝑋!" = 𝑥𝑥!" , 𝑋𝑋! = 𝑥𝑥!- − 𝐸𝐸$'𝑓𝑓(𝑋𝑋)*𝑋𝑋!! = 𝑥𝑥!! , … , 𝑋𝑋!" = 𝑥𝑥!"- 

and 𝜋𝜋(𝑗𝑗|𝐽𝐽)  the set of the indices of the variables 
that are positioned in J before the j-th variable. 
The Shaley value is therefore the effect of remov-
ing the information carried by the j-th variable 
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from the conditional expectation value of the 
prediction. To perform the analysis, we used the 
Shapley Additive Explanations (SHAP) library 
available in Python [25]. We divided the analy-
sis into two stages. In the first stage, we calcu-
lated the average absolute Shapley value for each 
predictor. The higher it was, the more impact the 
feature had on the model’s prediction. As a result 
we determined the global feature importance for 
the entire test dataset. In a second step, we ana-
lysed the distribution of Shapley values for sev-
eral of the most significant features. This allowed 
us to investigate the influence of the values of 
the individual predictors on the probability of a 
casting defect.

RESULTS AND DISCUSSION

Casting defect detection performance

Table 2 shows the final structure of the net-
work. The learning process followed several ini-
tial assumptions. We used binary cross-entropy as 
the loss function. The maximum training length 

was 100 epochs. However, the learning process 
stopped automatically if the value of the loss 
function in two consecutive epochs did not de-
crease. The batch size was equal to 256. We used 
the NAdam algorithm as the optimiser [26]. The 
validation dataset was 30% of the learning data-
set. The progression of the learning is shown in 
Figure 2. In the figure, we have shown the change 
in the ACC index instead of the loss function for 
the reason that we use the ACC index to evaluate 
the quality of the classifier also on the test dataset. 
Learning was automatically stopped at epoch 26 
according to the early stopping criterion.

The ROC curves for the learning and testing 
datasets are shown in Figure 3. The AUC value 
was 0.97 and 0.949 for the learning and testing 
datasets respectively. These values indicate very 
good predictive capabilities of the model. Using 
the distance criterion, the threshold points were 
selected as 0.714 (learning) and 0.701 (testing). 
For these threshold point, we calculated the con-
fusion matrices presented in Tables 3 and 4. To 
improve the clarity in both confusion matrices, 
we marked the correct classification cases, i.e. TN 

Table 2. Structure of DNN model

Layer number Layer type Additional information*
1 input n = 31
2 dense n = 32
3 regularization L2 = 0.001
4 dense n = 32
5 dropout rate = 0.5
6 dense n = 32
7 dropout rate = 0.5
8 dense n = 32
9 dropout rate = 0.4

10 dense n = 32
11 dropout rate = 0.5
12 dense n = 32
13 dropout rate = 0.5
14 dense n = 32
15 dropout rate = 0.4
16 dense n = 20
17 dropout rate = 0.4
18 dense n = 10
19 dropout rate = 0.4
20 dense n = 5
21 regularization L1 = 0.001
22 output n = 1

Note: *n is the number of neurons; rate is the 
neuron dropout rate; L1, L2 are the norm L1 and L2 
regularization parameters

Fig. 2. Change in ACC value during DNN learning

Fig. 3. The ROC curves for trained model
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and TP, in green and the misclassification cases, 
i.e. FN and FP, in red. Tables 3 and 4 also present 
classification performance index such as ACC, 
FPR, and TPR.

It is difficult to compare the achieved results 
with other works due to the completely different 
dataset. For example, in the paper [15], the model 
achieved an ACC of 0.94. However, the authors 
do not describe in detail the issue of balancing 
the dataset. It should be remembered in a case of 
unbalanced dataset the ACC index is not a good 
measure of the quality of the classifier. In con-
trast, the paper [14] compares a number of mod-
els whose ACC was in the range 0.833-0.955 with 
completely balanced dataset. It can therefore be 
concluded that the ACC indices for both datasets 
are satisfactory.

The other indexes are also at a satisfactory 
level and demonstrate high leak detection per-
formance (TPR = 0.865 for the testing dataset). 
The number of misclassified observations, espe-
cially of the FN type, can be reduced by choos-
ing a different threshold point on the ROC curve. 
In practice, this will reduce the probability for 
which a casting is considered defective. On the 
one hand, this will actually improve the detec-
tion of true leaks, but on the other hand it will 
increase the FPR, which in practice will mean 
more falsely detected leaks. It is important to re-
member that the model is intended to assist the 
production process by indicating which castings 
should pass additional quality tests. Too many 
wrongly indicated leaks will result in unnecessary 

inspection activities. Thus, the distance criterion 
appears to be an appropriate compromise solution 
in this case.

Casting defect cause interpretability

Figure 4 shows the global feature importance. 
It illustrates the strength of the effect of each fea-
ture on the leakage probability, but does not indi-
cate whether the feature has positive or negative 
impact on it. By far the most important feature in 
the model was temperature Tm8e changing the pre-
dicted leakage probability on average by 9.7 per-
centage points. It can also be seen that the features 
related to the temperature of the casting mould 
dominate (the first six features). In addition, the 
group of most important features includes two 
temperature measurement points, i.e. #9 and #3, 
taken at both the beginning and end of the cast-
ing process. Features related to the flow of water 
cooling are ranked at the 7th position and below. 
For a more detailed analysis, we selected the two 
most significant features, i.e. mould temperatures 
Tm8e and Tm9e with the average absolute Shapley 
value of 0.097 and 0.054 respectively.

Figure 5 shows the distribution of Shapley 
value over the selected feature. Note that the da-
taset has been normalised and transformed with 
the Yeo-Johnson transformation, so that the mea-
surement ranges are modified. For this reason, we 
have not included a description of the units on the 
horizontal axes. However, this does not prevent 
us from drawing interesting conclusions.

Table 3. The confusion matrix for learning dataset

Specification
Target class Classification 

performance‘ok’ ‘leakage’

Predicted 
class

‘ok’
no. of observations

(dataset percentage)

TN
22 096
(44.8%)

FN
2 484
(5%)

FPR = 0.103
TPR = 0.899
ACC = 0.899

‘leakage’
no. of observations

(dataset percentage)

FP
2 548
(5.2%)

TP
22 160
(45%)

Table 4. The confusion matrix for testing dataset

Specification
Target class Classification 

performance‘ok’ ‘leakage’

Predicted 
class

‘ok’
no. of observations

(dataset percentage)

TN
10 878
(84.8%)

FN
70

(0.5%)
FPR = 0.117
TPR = 0.865
ACC = 0.882

‘leakage’
no. of observations

(dataset percentage)

FP
1 440

(11.2%)

TP
443

(3.5%)
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Figure 5 (left) suggests that the relationship 
between the probability of leakage is inverse. 
In addition, the observations cluster into three 
groups. This indicates that the distribution of this 
feature is multi-modal. This is confirmed by the 
histogram (Figure 6), in which we have shown 
the temperature distribution of the Tm8e mould 
over the entire original dataset.

Each group is characterised by a different 
Shapley values range, but only for the lowest 
temperatures Shapley values are positive. This 
means that lower temperatures of the mould Tm8e 
increase the probability of leakage. The other two 
groups are concentrated in a narrower tempera-
ture range. It is also worth noting there is a large 
spread of Shapley values for certain temperature 
values. For example, for a normalised tempera-
ture value of 0.9, the Shapley values vary from 
-0.2 to 0. Thus, such a mould temperature value 
can significantly reduce the probability of leakage 
(by up to 20 percentage points) as well as have 
a neutral effect. This is an indication that there 

are some more complex interactions between fea-
tures in the process.

Figure 5 (right) shows that the higher the 
temperature is, the higher the Shapley value. In 
contrast to the mould temperature of Tm8e, here a 
more regular distribution of observations can be 
seen. The Shapley values vary between -0.2 and 
0.3. Higher temperatures are associated with a 
higher probability of leakage, while lower tem-
peratures reduce this probability.

CONCLUSIONS

This study proposed the original deep neural 
network model for detection the aluminum cast-
ing defect in automotive industry. The research 
focused on leak detection of engine heads made 
of silumin. The results of the study lead to the fol-
lowing conclusions:
1. The model performance is on the acceptable 

level given that the relationships existing be-
tween the predictors and the outcome variable 

Fig. 4. Global feature importance measured as the mean absolute Shapley value (SV)

Fig. 5. Distribution of Shapley values over mould temperatures Tm8e (left) and Tm9e (right)
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are complex, often nonlinear, and there are 
also interactions of the efficiency of individual 
variables.

2. The most important features influencing the 
probability of leakage are the signals of the 
three mould temperature measurement points. 
One of the point showed a dominant influence. 
This is probably related to the way the alu-
minium is introduced into the mould and to the 
cooling process of the casting.

3. None of the considered features had a clear 
positive or negative influence on the probabil-
ity of leakage. For each feature, it was possible 
to distinguish areas that either increased or de-
creased the occurrence of a defect.

4. The developed model can be used to automati-
cally evaluate the casting immediately after the 
completion of the process. The assessment can 
be performed without additional quality tests. 
The interpretation of the model by means of 
Shap analysis indicates the potential causes of 
the casting defect.

5. Most of the considered features were charac-
terised by an interaction with another feature or 
features. Finding these interactions could be an 
interesting direction for future research.

6. The sensitivity analysis of the model presented 
in the paper is the most interesting part, as it re-
veals how each predictor affects the probability 
of leakage. Indication of the strength of the in-
fluence and its shape helps to assess the course 
of the casting process and, consequently, can 
provide a basis for introducing a corrective 
procedure.
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